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An exhaustive Pad~ approximant study of the Mayer virial series expansion is 
carried out for the classical hard-sphere system. As one increases the order of 
the different approximants a clear tendency is seen to reproduce both the 
random close packing divergence of the fluid branch as well as its instability 
(towards the crystalline phase) at the spinodal point. 
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1. I N T R O D U C T I O N  

One of the l a n d m a r k s  in twent ie th  cen tury  theoret ica l  physics  has  been the 
der iva t ion  of the M a y e r  virial  expans ion  (1) for the pressure of a classical  
f luid in powers  of its density,  with coefficients which are  essent ial ly  
integrals  over  the in te rac t ion  be tween part icles .  Knowledge  of these so- 
cal led virial  coefficients is equivalent  to solving exact ly  the classical  statist i-  
cal p rob l em successively for two, three, etc., par t ic les  in terac t ing  at  zero 
densi ty.  The  quest ion (2) of whether  the resul t ing series conta ins  in fo rmat ion  
re levant  to condensed  phases,  such as l iquid, glass ( amorphous  solid), and  
crystal ,  which empi r ica l ly  occur  at  higher  densit ies,  is a very old  one 
indeed.  
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A recalculation of the multiple integrals involved in the sixth and 
seventh coeffieients for hard spheres was recently carried out (3) and we 
now have, for the pressure P of N hard spheres of diameter o enclosed in a 
volume V and at a temperature T, the expansion 

6 

P V  = Z ( x )  = 1 + ~,  A , x n +  " . "  (1) 
N k T  n = |  

x=--P/Oo, o ~ N / V ,  O0 ~- ,~- /o  3 (2) 

A 1 = 2.961921959, A 2 = 5.483113556 

A 3 = 7.456363357, A 4 = 8.485568085 

A 5 = 8.8678 + e s , A 6 = 9.2504 + s 
(3) 

e 5 = 0.0912, s = 0.4051 

where A n is traditionally called the (n + 1)th virial coefficient, and density x 
is referred to the presumably (4) maximum possible value Po corresponding 
to regular close packing of spheres in a face-centered-cubic configuration. 
Regarding convergence of the expansion (1) for hard spheres, rigorous 
lower bounds to the radius of convergence in x have been established at 
about 0.024 (5~ and subsequently at about 0.026, (6) i.e., still very small 
densities compared with physically relevant values. 

The hard-sphere fluid is much more than an academic problem since 
(a) its partition function is nontrivial unlike the one-dimensional case; (b) it 
displays at least three distinct phases: (i) gas, (ii) amorphous solid, (7~ and 
(iii) crystalline solid, (8~ as computer experiments have determined; and (c) 
it provides a good starting point for perturbative treatments (9) of real 
classical fluids since it was discovered that the latter has a pair distribution 
function qualitatively similar to that of the hard-sphere gas. As long ago as 
1704 Issae Newton stated, in his Optiks, that "All bodies seem to be 
composed of hard particles: For otherwise Fluids would not congeal." 

That  the physical richness related to condensed phases, even in a 
simple system like that of hard spheres, can be extracted from the virial 
expansion alone is an endeavor which has perhaps been inhibited by the 
Yang and Lee theorems (1~ on possible phase transition mechanisms. Their 
specific application (~1) to the two-dimensional lattice gas (a spin system) 
shows the presence of a "natural boundary" of singularities for the pressure 
in the activity plane, beyond which analytic continuation of a function 
represented by the activity virial series is impossible. It is, however, not 
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known what kind of singularities are present in a continuum system like 
say, the hard-sphere fluid. And even if these singularities should turn out to 
constitute a natural boundary there are counterexamples (12) (involving 
Pad6 appproximants) whereby analytic continuation beyond the boundary 
is possible, albeit, of course, not by the standard (Weierstrass) technique of 
reexpanding about points successively farther away from the origin. Not 
only finding liquid, crystalline, etc. phases solely from the virial expansion 
but even the possibility of detecting the instability of the fluid phase (l~) has 
been questioned. 

We offer the present study as a step towards extracting more informa- 
tion from the virial series alone than was previously suspected, save for at 
least two previous attempts, (14) but leave for the future such prospects as 
obtaining the crystalline or glassy phases. 

2. PADF: ANALYSIS OF VIRIAL SERIES 

We represent (symbol --) the virial series (1) by the ratio of an Lth- to 
an Mth-order polynomial, L and M nonnegative integers, such that 

6 1 + p l  X -[-p2x2"[ - " ' "  -[-pL X L  = [ L / M ] ( x )  (4) 1 + ~ A~x  n -  
,,=l l + q lx  + q2x2 + �9 + qM x M  

and define the L coefficients (Pl, 192 . . . . .  PL) and M coefficients (ql, 
qv  �9 �9 �9 , qM) such that on Taylor expansion of [ L / M ] ( x )  about x = 0 the 
first (L + M) coefficients of the series are reproduced exactly. The ex- 
trapolant [ L / M ] ( x )  is called the L, M Pad6 approximant (15) and is a sort 
of analytic continuation beyond the neighborhood x << 1. 

The system pressure, from (1), will thus be represented by 

P / O o k T  "-- x [ L / M ]  ( x )  (5) 

In a recent study (t6) several Pad6 approximants were found which correctly 
reproduced (to two digits), apparently for the first time, the empirical 
random (or irregular) close packing (RCP) density where the system pres- 
sure diverges. This density, also known as the Bernal density, (17) has been 
accurately determined (to four digits) in experiments with steel ball- 
bearings and turns out to be PRCP = 0"859700, i.e., less than regular close 
packing density P0. Computer generations of random close packings have 
thus far given a value about 3% smaller than this. (18) The study by Baram 
and Luban (14) places the pole at p = P0, but this divergence is in reality 
associated with the crystalline, not the fluid, branch. 
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Table I. Poles and Maxima, If Any, for the Different Pade Approximant 
Representations of the Hard-Sphere Pressure, Eq. (5), Compared with 

Experiment 
i i 

max of 
P/PokT = 

L M Behavior in 0 < x < 1 x[L/M](x) Comments 

0 1 Pole at x = 0.3376 ~ van der Waals 

1 1 Pole a t x  = 0.5402 
0 2 Max at x = 0.5513 1.5022 ~ B B G K Y  

2 l Pole at 0.7354 
1 2 Max at 0.6571 2.6750 
0 3 Max at 0.7265 3.3572 

3 1 Pole at 0.8787 
2 2 Monotone increasing - -  
1 3 Pole at 0.4470 
0 4 Pole at 0.5951 oo 

4 1 Pole at 0.9569 
3 2 Monotone increasing - -  
2 3 Pole at 0.8731 
1 4 Pole at 0.6901 oo 
0 5 Max at 0.7100 6.0353 

5 1 Pole at 0.9586 
4 2 Pole at 0.9587 
3 3 Pole at 0.8618 oo 
2 4 Pole at 0.8624 
1 5 Max at 0.7292 6.8252 
0 6 Max at 0.7303 6.8676 

EXP Max at 0.667 < x < 0.736 > 8.14 
(N = oo) Pole at 0.8597 oo 

Third best RCP prediction 

Best RCP prediction 
Second best RCP prediction 

T a b l e  I s u m m a r i z e s  t h e  c o m p l e t e  P a d 6  a p p r o x i m a n t  t a b l e  r e s u l t s  f o r  

z e r o  e r r o r  e s = 0 = E 6 in  (3).  T h e  [ L / 0 ]  a p p r o x i m a n t s  L = 1 ,2  . . . . .  6, h a v e  

n o t  b e e n  l i s t e d  s i n c e ,  a l l  t h e  A , ' s  b e i n g  p o s i t i v e  in  (4),  t h e  [L/O](x) a r e  

m o n o t o n i c  i n c r e a s i n g  f o r  a l l  x .  P a d 6  c o e f f i c i e n t s  f o r  s o m e  s e l e c t e d  

a p p r o x i m a n t s  a r e  g i v e n  in  T a b l e  I I .  T h e  s i m p l e s t  n o n t r i v i a l  P a d 6  is t h e  

[ 0 / 1 ] ( x )  w h i c h  g i v e s  t h e  e q u a t i o n  o f  s t a t e  

P x ~ x [ 1 - q t x +  . - .  ] ,  (6 )  
p o k T  "-- x [ O / 1  ] ( x )  - 1 + q , x  x<<l 

q1 =- - A ] = - 2--7-~ 
3 
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Table II, Thepi and qi Coefficients of Some Selected Pad(~ Approximants 
Based on the Hard-Sphere Virlal Series (4) 

[3/3] [2/4] [2/3] 

99 

p~ 0.61789570 0 . 6 7 8 7 3 9 2 2  0.67146994 
p~ 0 . 6 2 7 9 3 5 0 5  0 . 6 6 8 7 8 9 6 5  0.68086743 
P3 - 0.04142637 - -  - -  

ql - 2.3440263 -2.2831827 -2.2904520 
q2 2.0876444 1.9482852 1.9818940 
q3 - 0.82866721 - 0.70808179 - 0.76777021 
q4 - -  -0.04671385 - -  

[0/6] [1/5] [0/5] [0/2] 

pj - -  0.06021415 - -  - -  

ql - 2.9619220 -2.9017078 -2.9619220 -2.9619220 
q2 3.2898681 3.1115785 3.2898681 3.2898681 
q3 - 0.96014158 - 0.76204498 - 0.96014158 - -  
q4 - -  1.5952579 - 1.6530720 - 1,5952579 - -  
q5 1.7248968 1.6288397 1.7248968 - -  
(/6 - -  0.10386319 - -  - -  - -  

a n d  by  de f in i t i on  r e p r o d u c e s  the  first  coe f f i c i en t  A 1 of  the series (4), i.e., the  

second vir ial  coef f ic ien t ,  exact ly .  E q u a t i o n  (6) is precisely the  v a n  der  W a a l s  

e q u a t i o n  of  s ta te  for  a sys tem of  h a r d  spheres  

P _ P _ N b ~ o 3  
k T  1 - bp V -  b N  (7) 

wi th  b, the " e x c l u d e d  v o l u m e  pe r  pa r t i c l e , "  be ing  ha l f  the  exc lus ion  v o l u m e  

of a s ingle sphere .  Th is  a p p r o x i m a n t  p r o d u c e s  a ( f i rs t -order)  po le  at 

x = (2V~-~T/3)-1----- 0.3376, still qu i te  b e l o w  the  e m p i r i c a l  X R c e =  0.8597. 
H o w e v e r ,  the  " r i c h e s t "  a p p r o x i m a n t s  [ 3 / 3 ] ( x )  a n d  [ 2 / 4 ] ( x ) ,  respec t ive ly ,  

g ive  the  p o l e  a t  x = 0.8618 a n d  0.8624. 

T o  inves t iga te  w h e t h e r  the  M a y e r  vir ial  series can  a lso  p red ic t  the  

s p i n o d a l  p o i n t  we seek so lu t ions  of  

for  a sp inoda l  p o i n t  dens i ty  p~, such  tha t  

(8) 

O < x s ~ ps /po  < 1 (9) 
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Equations (9) and (6) are identical to 

([L/M](x)-'x ~a [ L / M ] ( ~ ) } x = .  = - 1  (10) 

which was found to be satisfied, together with (9), by several approximants 
as listed in Table I with the designation "max at x~". Figure 1 shows the 
associated pressure-vs.-density curves. 

The simplest approximant which satisfies (10) is the [0/2](x) which 
gives 

P - x [ o / 2 ] ( ~ )  = 
Oo k T  1 q- qlx -1- q2 X2 

x~<|X[1 -- ql x "Jr- (q~- -  q2)x 2 "Jr (2qlq2-- q~)x 3 "Jr O(X4)] (11) 

The coefficients A 1 ~ - ql, A2 = (q~ - q2) of (4) are reproduced exactly, by 
definition. In other words, the second and third virial coefficients are 
correctly reproduced by (11)just  as in the Born-Green-Yvon (BGY) 
integral equation theory, (1'19) which is based on the Kirkwood superposi- 

f 
x 

t---I, 
x 

.11 

4 
s 1 

0 I 
0,2 0,5 0,8 

x - ? / / o o  

Fig. 1. Pressure (in units of #okT) vs. density (in units of Po) for the hard-sphere fluid as 
given by all the possible Pad~ approximants [L/M](x) showing a maximum in pressure, i.e., a 
spinodal point. 
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tion approximation (2~ for the triplet distribution function. This theory 
gives (n) for A 3 the value 

A3(BGY ) = 5.852998 (12) 

in contrast to the value given by (11) 

A3 = (2qlq2 _ q3) = 6.4962218 (13) 

which is closer to the exact A 3 of (3). It is well known that BGY theory for 
hard spheres predicts (22) a spinodal point even though it only reproduces 
up to the third virial coefficient exactly. Other integral equation theories 
such as the Percus-Yevick (23) (PY) and hypernetted chain approxima- 
tion (24) equations also reproduce (19) the third virial coefficient exactly. 
These three theories have been generalized (25) (into what is called (26) 
BGY2, PY2, and HNC2) so as to reproduce correctly up to and including 
the fourth virial coefficient but the resulting schemes are very difficult and 
expensive to solve. To our knowledge it is not known whether any of them 
would continue to predict spinodal points. The latter is indeed seen in 
Table I to be the case with our next approximants, the [1/2](x) and 
[0/3](x), both of which reproduce exactly up to and including A 3 of (4), 
i.e., the fourth virial coefficient. 

The next level of approximants, order L + M = 4, however, is qualita- 
tively distinct: no maximum appears below the first divergence, and Fig. 2 

Fig. 2. 
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Same as Fig. 1, for the [1/3](x) Pad~ approximant which develops a pole below the 

maximum, and is hence discarded. 
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Fig. 3. 
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Same as Fig. 1, showing how the pressure-density location of the predicted spinodal 
point tends to the computer experiment results. (31) 

illustrates a typical case. The spinodal point reappears in order L + M = 5 
and increases in its value of pressure and of density up to P/OokT  = 6.8676 
and x =--P/Oo = 0.7303 for the [0/6](x) approximant. Figure 3 illustrates 
these values for all the spinodal-point-bearing approximants. Computer 
experiments (27) give x = 0.667 for the freezing density and x = 0.736 for 
melting, both at P/OokT  = 8.27 +__ 0.13, for the infinite particle limit (where 
strictly speaking no spinodal points would be present). For a large but finite 
number of particles the size of P/OokT  at freezing would be somewhat 
smaller (27) than the above-quoted value. 

We finally note that the "best" Pad6 representation giving the spinodal 
point, the [0/6](x), can be written as a generalized van der Waals equa- 
tion (8) 

P (14) P / k T - - O o x [ O / 6 ] ( x )  - 1 - b (x )p  

with the density-dependent "excluded volume" per particle 

b(x )  =-- o3 1 + -471x i (15) 
i= 

This is found to decrease monotonically from (2~r/3)0 3 at x = 0 to ~0 .2  
times this at x = 1. 
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3. CONCLUSIONS 

We therefore see that Pad6 approximants offer a very simple scheme 
for constructing successively better equations of state for fluids from first 
principles. They correctly reproduce low-density virial coefficients as do 
more complicated approaches such as integral equation theories, as well as 
go considerably beyond these, and provide a clear tendency to approximate 
the terminal density of the fluid branch both as regards random close 
packing divergence as well as the instability to the ordered phase. It is a 
hope that the present or similar methods will also eventually constitute a 
means of extracting the actual condensed phases of the amorphous and 
crystalline solid--and even the liquid, if attractions are included--directly 
from the Mayer virial series. 
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